Classification of handwritten Javanese script using random forest algorithm
نویسندگان
چکیده
The ability to read and write Javanese scripts is one of the most important competencies for students have in order preserve language as Indonesian cultures. In this study, we developed a predictive model 20 characters using random forest algorithm basis developing script learning media students. building model, used an extensive handwritten image dataset experimented with several different preprocessing methods, including conversion black-and-white, cropping, resizing, thinning, feature extraction histogram oriented gradients. From experiment, it can be seen that resulting able classify very accurately accuracy, precision, recall 97.7%.
منابع مشابه
Diagnosis of Diabetes Using a Random Forest Algorithm
Background: Diabetes is the fourth leading cause of death in the world. And because so many people around the world have the disease, or are at risk for it, diabetes can be called the disease of the century. Diabetes has devastating effects on the health of people in the community and if diagnosed late, it can cause irreparable damage to vision, kidneys, heart, arteries and so on. Therefore, it...
متن کاملRecognition of Handwritten Indic Script Using Clonal Selection Algorithm
The work explores the potentiality of a clonal selection algorithm in pattern recognition (PR). In particular, a retraining scheme for the clonal selection algorithm is formulated for better recognition of handwritten numerals (a 10-class classification problem). Empirical study with two datasets (each of which contains about 12,000 handwritten samples for 10 numerals) shows that the proposed a...
متن کاملClassification of genome data using Random Forest Algorithm: Review
Random Forest is a popular machine learning tool for classification of large datasets. The Dataset classified with Random Forest Algorithm (RF) are correlated and the interaction between the features leads to the study of genome interaction. The review is about RF with respect to its variable selection property which reduces the large datasets into relevant samples and predicting the accuracy f...
متن کاملRandom Forest Algorithm for Land Cover Classification
Since the launch of the first land observation satellite Landsat-1 in 1972, many machine learning algorithms have been used to classify pixels in Thematic Mapper (TM) imagery. Classification methods range from parametric supervised classification algorithms such as maximum likelihood, unsupervised algorithms such as ISODAT and k-means clustering to machine learning algorithms such as artificial...
متن کاملHandwritten Javanese Character Recognition Using Several Artificial Neural Network Methods
Javanese characters are traditional characters that are used to write the Javanese language. The Javanese language is a language used by many people on the island of Java, Indonesia. The use of Javanese characters is diminishing more and more because of the difficulty of studying the Javanese characters themselves. The Javanese character set consists of basic characters, numbers, complementary ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of Electrical Engineering and Informatics
سال: 2021
ISSN: ['2302-9285']
DOI: https://doi.org/10.11591/eei.v10i3.3036